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Mission Pull for High Power EP 

 Increased power required for: 

 Asteroid Redirect Mission (12.5 kW) 

 Space tugs (100’s of kW) 
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Artist rendering of NASA’s Asteroid Redirect Mission 



High Power with a Small 

Footprint 

 Want to scale to large powers, 

but size is an issue 

 Nested channels allow for 

higher power in a smaller 

footprint 

 X2 is a proof of concept 

thruster developed at UM 

 2 channels, up to 10 kW 

discharge power 

 Has been well characterized 

 Currently used to validate 

simulation 
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The proof-of-concept X2 nested-

channel Hall thruster 



Channel Interaction is 

Beneficial 

[1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," 
Ph.D. Dissertation, Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 
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The X3: a 200-kW,  

Three-Channel NHT 
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 Builds upon X2 design 

 ~ 1 m diameter 

 Mass > 250 kg 

Prior to first firing At 61 kW discharge power 

 Designed: 2009-2011 

 Built: 2012 

 First firing: 2013 



X3 Design 
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Magnetic Field 

 Each channel must be 

shaped correctly 

 Additionally, channels must 

be independent 

 Entire body of thruster is 

part of magnetic circuit 

 The magnetic field for 3 

channels required significant 

modeling 
Cartoon illustrating 
channel magnetic field 
directions 
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Concerns About Heat Dissipation 

 Thermal modeling used in design process: 

 Material selection 

 Accounting for thermal expansion in tolerances 

 Powers up to 200 kW 

Images from thermal modeling tool 
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The X3 Cathode is Rated to 300 A 
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 Typical HET cathodes: 100 A 

 X3 cathode: 300 A 

 Specially designed by NASA 

JPL and NASA Glenn 

The JPL-built cathode for the X3 



Preliminary Results 
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Initial Characterization 
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 The X3 has been run to 61 kW so far 

 Testing to date has consisted of: 

 A ‘burn in’ period on krypton propellant 

 An ‘initial characterization’ on xenon propellant 

 The initial characterization consisted of 2 ‘sets’ of 

operating conditions  

 Each set contained the 7 operational modes of the thruster 

 Sets at constant current density: 37% and 73% nominal 



Breathing Mode 

 High-speed current probes yield Power Spectral Densities (PSDs) 

 Breathing modes converge (to varying degrees) 

 Strongest in 3-channel mode 

Discharge current - 205 A 
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Channel Coupling 
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 An anomalous “hump” appears at 73 kHz in the inner channel 

PSD 

 The same hump appears in the outer channel PSD 

Discharge current – 140 A 



Unexpected Propellant Savings 
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 Propellant usage in multi-channel modes is less than the sum of the 

channels running individually 
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Future Experimental Work 
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 Run thruster through entire operational envelope, up 

to 200 kW 

 A larger vacuum chamber is necessary:  VF5 at NASA Glenn, 

perhaps B2 at Plum Brook  

 Will mimic the ‘initial characterization’ done at PEPL 

 Full thruster characterization 

 Measure thrust 

 Use suite of plasma probes to fully analyze plume 

characteristics in the near- and far-field 

 Collaborate with a modeler in real time throughout 



Modeling and 

Simulation 
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Motivation for Simulations and 

Modeling of the Channels 
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 Full characterization of 

the thruster channels 

 Hard to measure 

quantities inside channel 

 Future input for a plume 

simulation 

 Investigation of channel 

interaction 

 Design feedback 

Simulation 

Analysis Experiment 



Simulation Strategy 
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 Using 2D axisymmetric hybrid code HPHall [2] 

 First the X2 is used for validation 

1. Inner channel 

2. Outer channel 

3. Dual channel 

 Then the X3 will be investigated 

1. Single channel 

2. Combinations of dual channel operation 

3. Triple channel operation 

[2] Fife, J.M., “Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters," Ph.D. Dissertation, Dept. of Aeronautics 

and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 1998.). 



X2 Inner Channel 

Simulation Setup 
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X2 

21 [1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, 

Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 



Axisymmetric – 2D 

22 [1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, 

Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 



Axisymmetric – 2D 

23 [1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, 

Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 



Axisymmetric – 2D 

24 [1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, 

Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 



Inner Channel 

25 [1] Liang, R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster," Ph.D. Dissertation, 

Aerospace Engineering Dept., University of Michigan., Ann Arbor, MI, 2013.). 
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B field lines Mesh 

Magnetic Field and Mesh 



Simulation Parameters 
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Propellant gas Xe 

Total number of neutrals (macroparticles) 133,000 

Total number of ions (macroparticles) 613,000 

Total simulation time 4 [ms] 

Simulation timestep 5 ∗ 10−8 [s] 

Propellant flow rate 7 [mg/s] 

Discharge voltage 200 [V] 

Wall temperature 812 [K] 

Computation time 22 [hrs] 



Simulation Results 
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Results 
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 Successfully ran 2 simulations for the inner channel: 

 in vacuum 

 with the reported facility background pressure (1.5 ∗ 10−5 Torr) 

 The thrust value difference was within statistical error 

Thrust Values (mN) 

Measured Simulation in 

vacuum 

Simulation with 

LVTF backpressure 

92.0 ± 3.00 88.5 ± 0.342 88.4 ± 0.273 



Neutral Number Density 

Comparison Along CL 
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Xe and Xe+ Number Densities 
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Electron Temperature and Number 

Density 
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Preliminary Conclusions 

33 

 Facility backpressure does not influence the inner channel 

 Thrust values are in good agreement with measurement 

 Do not expect triply charged Xe ions 



Future Modelling Work 
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 Near term: 

 Compare measured centerline values of electron temperature and 
plasma potential with simulation results 

 Measure B field and compare to MagNet results (verification) 

 Obtain B field from MagNet for other thruster operating conditions 

 Prepare outer channel simulation 

 Medium term: 

 Update code 

 Electron model 

 Mesh reading routine 

 Prepare dual channel simulation 

 Long term: 

 Move on to X3 simulations 

 

 

 

 



Inner Middle Outer 

Inner + Middle Middle + Outer Inner + Outer 
Inner + Middle + Outer: 61 kW 
total discharge power 
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Questions? 



Backup Slides 
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Comparison to Chemical 

Propulsion 
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Parameter One Space Shuttle Solid 

Rocket Booster 

Typical Hall-Effect 

Thruster (HET) 

Application Surface to LEO In-space 

Thrust 2,270,000 N 0.05-0.1 N 

Specific Impulse 269 s 2000-3000 s 

Power 4.9 GW 6 kW 

Burn Time 127 s 5 years 

Propellant Mass 500,000 kg 3,060 kg 

Propellant Type Aluminum Perchlorate Xenon 

Total Energy 620 GJ 620 GJ 



Vacuum Facility 
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 Testing has occurred in the 

Large Vacuum Test Facility at 

PEPL 

 A 9 m long, 6 m diameter 

stainless-steel-clad vacuum 

chamber 

 4 mechanical pumps, 2 blowers 

to rough vacuum; 7 cryopumps 

to full base pressure 

 Base pressure of 1x10-7 Torr 

(1x10-10 atm) 



The X3’s channels can be run  

separately or together in any combination 

Inner (I) Middle (M) Outer (O) 

I+O I+M M+O I+M+O 
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The X3 non-trivial to handle 

it safely in the lab 
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 Typical laboratory HETs can be carried by one or two 

people 

 The X3 needs: 

 a cart for storage 

 a crane for installation in the vacuum chamber 

 

Gantry crane 
Holding fixture used as the 
assembly rig for the X3 



Code Execution Sequence 

41 [2] Fife, J.M., “Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters," Ph.D. Dissertation, Dept. of Aeronautics 

and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 1998.). 



Xe Velocities 
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Xe+ Velocities 
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Ion Current Density 
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Plasma Potential 
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